skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Aubrecht, Donald_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Understanding tree transpiration variability is vital for assessing ecosystem water‐use efficiency and forest health amid climate change, yet most landscape‐level measurements do not differentiate individual trees. Using canopy temperature data from thermal cameras, we estimated the transpiration rates of individual trees at Harvard Forest and Niwot Ridge. PT‐JPL model was used to derive latent heat flux from thermal images at the canopy‐level, showing strong agreement with tower measurements (R2 = 0.70–0.96 at Niwot, 0.59–0.78 at Harvard at half‐hourly to monthly scales) and daily RMSE of 33.5 W/m2(Niwot) and 52.8 W/m2(Harvard). Tree‐level analysis revealed species‐specific responses to drought, with lodgepole pine exhibiting greater tolerance than Engelmann spruce at Niwot and red oak showing heightened resistance than red maple at Harvard. These findings show how ecophysiological differences between species result in varying responses to drought and demonstrate that these responses can be characterized by deriving transpiration from crown temperature measurements. 
    more » « less